Efficient Large Scale Video Classification

نویسندگان

  • Balakrishnan Varadarajan
  • George Toderici
  • Sudheendra Vijayanarasimhan
  • Apostol Natsev
چکیده

Video classification has advanced tremendously over the recent years. A large part of the improvements in video classification had to do with the work done by the image classification community and the use of deep convolutional networks (CNNs) which produce competitive results with handcrafted motion features. These networks were adapted to use video frames in various ways and have yielded state of the art classification results. We present two methods that build on this work, and scale it up to work with millions of videos and hundreds of thousands of classes while maintaining a low computational cost. In the context of large scale video processing, training CNNs on video frames is extremely time consuming, due to the large number of frames involved. We propose to avoid this problem by training CNNs on either YouTube thumbnails or Flickr images, and then using these networks’ outputs as features for other higher level classifiers. We discuss the challenges of achieving this and propose two models for frame-level and videolevel classification. The first is a highly efficient mixture of experts while the latter is based on long short term memory neural networks. We present results on the Sports-1M video dataset (1 million videos, 487 classes) and on a new dataset which has 12 million videos and 150,000 labels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting

Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...

متن کامل

Video Subject Inpainting: A Posture-Based Method

Despite recent advances in video inpainting techniques, reconstructing large missing regions of a moving subject while its scale changes remains an elusive goal. In this paper, we have introduced a scale-change invariant method for large missing regions to tackle this problem. Using this framework, first the moving foreground is separated from the background and its scale is equalized. Then, a ...

متن کامل

COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...

متن کامل

EXMOVES: Classifier-based Features for Scalable Action Recognition

This paper introduces EXMOVES, learned exemplar-based features for efficient recognition of actions in videos. The entries in our descriptor are produced by evaluating a set of movement classifiers over spatial-temporal volumes of the input sequence. Each movement classifier is a simple exemplar-SVM trained on low-level features, i.e., an SVM learned using a single annotated positive space-time...

متن کامل

Contour-based classification of video objects

The recognition of objects that appear in a video sequence is an essential aspect of any video content analysis system. We present an approach which classifies a segmented video object based on its appearance (object views) in successive video frames. The classification is performed by matching curvature features of the contours of these object views to a database containing preprocessed views ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1505.06250  شماره 

صفحات  -

تاریخ انتشار 2015